Linux核心概念详解
  • 0. Linux核心概念详解
  • 1. 调试环境
  • 2. Linux 调度器
    • 2.1 任务
    • 2.2 核心概念
      • 2.2.1 核心概念 - 调度实体
      • 2.2.2 核心概念 - 调度类
      • 2.2.3 核心概念 - 调度策略
      • 2.2.4 核心概念 - 运行队列
      • 2.2.5 核心概念 - 优先级
    • 2.3 演进历史
      • 2.3.1 O(n)调度器 - 调度逻辑
      • 2.3.2 O(n)调度器 - 时间分配
      • 2.3.3 O(n)调度器 - 调度时机
      • 2.3.4 O(1)调度器 - 简介
      • 2.3.5 O(1)调度器 - 调度逻辑
      • 2.3.6 O(1)调度器 - 时间分配
      • 2.3.7 RSDL
      • 2.3.8 CFS
    • 2.4 DL调度器
      • 2.4.1 DL调度器 - 调度算法
      • 2.4.2 DL调度器 -核心代码
    • 2.5 RT调度器
    • 2.6 CFS
      • 2.6.1 公平性
      • 2.6.2 调度逻辑
      • 2.6.2.1 调度逻辑 - 数据结构
      • 2.6.2.2 调度逻辑 - vruntime
      • 2.6.2.3 调度逻辑 - 调度周期
      • 2.6.2.4 调度逻辑 - 调度节拍
      • 2.6.2.5 调度逻辑 - 任务抢占
      • 2.6.2.6 调度逻辑 - 调度时机
      • 2.6.3 组调度
      • 2.6.3.1 组调度 - 数据结构
      • 2.6.3.2 组调度 - 调度逻辑
      • 2.6.3.3 组调度 - 时间分配
      • 2.6.3.4 组调度 - 任务组权重
      • 2.6.4 带宽控制
      • 2.6.4.1 带宽控制 - 数据结构
      • 2.6.4.2 带宽控制 - 带宽时间
      • 2.6.4.3 带宽控制 - 挂起与解挂
      • 2.6.4.3 带宽控制 - 定时器
    • 2.7 负载追踪
      • 2.7.1 负载追踪 - 简介
      • 2.7.2 负载追踪 - 数据结构
      • 2.7.3 负载追踪 - 计算负载
      • 2.7.4 负载追踪 - 更新负载
    • 2.8 负载均衡
      • 2.8.1 简介
      • 2.8.2 CPU的拓扑结构
      • 2.8.3 数据结构
      • 2.8.4 算法思路
      • 2.8.5 触发时机
      • 2.8.6 总结
  • 3. LINUX 内存管理
    • 3.1 寻址模式
      • 3.1.1 地址
      • 3.1.2 地址转换
      • 3.1.3 Linux的地址空间
    • 3.2 物理内存
      • 3.2.1 数据结构
      • 3.2.2 初始化
      • 3.2.3 物理内存模型
      • 3.2.4 Buddy System(伙伴系统)
      • 3.2.5 SLAB/SLUB/SLOB
Powered by GitBook
On this page

Was this helpful?

  1. 3. LINUX 内存管理

3.2 物理内存

本节我们将主要介绍内核如何管理物理内存,首先我们将介绍与之相关的重要数据结构,这些数据结构的关系体现了内核管理物理内存的基本思路。组织管理好物理内存的目的是为了更高效、合理地使用内存,然而在内存不断分配与释放的过程中我们将面临很多问题,最大的问题之一是内存的碎片化,本节我们将介绍内核如何使用Buddy System算法有效降低内存使用过程中的碎片率。另外,效率是内核永恒的话题,我们还将介绍内核如何通过 slab/slob/slub 来提升对内存的使用效率。

内存管理模块非常复杂,本节的目的是梳理出内核在内存管理上的总体设计思路,因此不会深入每个场景的细节之中(例如内存的初始化流程),但我们会对关键部分的主要函数进行分析,以便为读者搭建起总体的知识框架。

Previous3.1.3 Linux的地址空间Next3.2.1 数据结构

Last updated 3 years ago

Was this helpful?